Secretive expression of heterologous β-glucosidase in Zymomonas mobilis

نویسندگان

  • Zichen Luo
  • Jie Bao
چکیده

Background: Zymomonas mobilis is an efficient ethanol fermentation strain, but its narrow substrate range limits its fermentation in lignocellulose hydrolysate. As a potential consolidated bioprocessing (CBP) stain for bioethanol production, the ability of cellulose utilization was necessary. In this study, extracellular expression of β-glucosidase on Z. mobilis was studied as the first step for construction of a practical CBP strain to reduce the use of β-glucosidase in the cellulase components. Results: The heterologous β-glucosidase from Bacillus polymyxa was expressed in the ethanologenic strain Z. mobilis (ZM4) and secreted extracellularly by an endogenous signal peptide and a fusion protein. The signal peptide SP1086 of the endoglucanase gene ZMO1086 from Z. mobilis was identified and facilitated 12 % of the endoglucanase encoded by ZMO1086 from Z. mobilis ZM4 and 16 % of the β-glucosidase encoded by bglB gene secreted out of the membrane of Z. mobilis ZM4. Another method for enhancement of the β-glucosidase secretion is to fuse the β-glucosidase encoded by bglB with the levansucrase encoded by sacB from Z. mobilis ZM4 to achieve the secretive expression. Its expression level was enhanced two times but only showed a 2 % secretion ratio in this situation. Conclusions: The SP1086 signal peptide showed an obviously secreting capacity of the β-glucosidase protein. The fusion protein with SacB also showed the secretion effect, but it was less efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pantothenate auxotrophy in Zymomonas mobilis ZM4 is due to a lack of aspartate decarboxylase activity.

The bacterium Zymomonas mobilis naturally produces ethanol at near theoretical maximum yields, making it of interest for industrial ethanol production. Zymomonas mobilis requires the vitamin pantothenate for growth. Here we characterized the genetic basis for the Z. mobilis pantothenate auxotrophy. We found that this auxotrophy is due to the absence of a single gene, panD, encoding aspartate-de...

متن کامل

Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis.

Development of the strategy known as consolidated bioprocessing (CBP) involves the use of a single microorganism to convert pretreated lignocellulosic biomass to ethanol through the simultaneous production of saccharolytic enzymes and fermentation of the liberated monomeric sugars. In this report, the initial steps toward achieving this goal in the fermentation host Zymomonas mobilis were inves...

متن کامل

Alcohol Production from Cassava Starch by Co-immobilized Zymomonas mobilis and Immobilized Glucoamylase

Simultaneous saccharification and fermentation of dextrin£zed cassava starch to glucose and alcohol, respectively, were carried out by co-immobilized Zymomonas mobilis and immobilz'zed glucoamylase (IG). Calcium alginate-entrapped cells and IG (4 : 1 ratio) gave an alcohol productivity of 0.30 glgww cellslh in a batchfermentation process. For continuous fermentation, 54.3 gil alcohol was produc...

متن کامل

Heterologous Expression of Plant Cell Wall Degrading Enzymes for Effective Production of Cellulosic Biofuels

A major technical challenge in the cost-effective production of cellulosic biofuel is the need to lower the cost of plant cell wall degrading enzymes (PCDE), which is required for the production of sugars from biomass. Several competitive, low-cost technologies have been developed to produce PCDE in different host organisms such as Escherichia coli, Zymomonas mobilis, and plant. Selection of an...

متن کامل

Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars

BACKGROUND To develop pathways for advanced biofuel production, and to understand the impact of host metabolism and environmental conditions on heterologous pathway engineering for economic advanced biofuels production from biomass, we seek to redirect the carbon flow of the model ethanologen Zymomonas mobilis to produce desirable hydrocarbon intermediate 2,3-butanediol (2,3-BDO). 2,3-BDO is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015